STEM_6

B 28 & #

B &

Lo BT RE I oottt 2
2. BB ot 2
B TR LED ottt s 3
B AEZE Lot 5
B, (EFIRER .o 5
B. EZE 2ottt 10
T ABFEEMRER oottt 10
8. EEE Bt 12
Q. TEBEAIAEIE oot 13
10, I B e 15
10 AEZE Dot 20

.
12 A 20
. =1

STEM 6 [ExX— : a5

Z3 Arduino A9 GND £HH -

EEIBBNEEARMLEBANEREBR LED It EHRERRRENR -
P8 LED &2 RECARMRER -

ERINBREEE 2% - ZFHMITE mBlock MG W HRERMOE—E
Arduino 2% -

Arduino T2

2z s @ st s G

2 B € = @S

EEERRERP - Hof s " ED - SRR
BMEERER RSB LUSIE LED - HMESE "REBUMNT X\
X BARZEBHE—E "S5 X, BARERPEUR -

EA L LED SRH2—ME - KERR—E - AR M ME—E
"AMEEE BART - IR K ERET - ERRMIE Arduino =
WWERSLE -

[ER#EZ : Controlling-LEDs.sb2]

4 HIEFTA 2019 © HEMENRHAIRAE]

[BBE—: 8% STEM_6

4. FE 1

1. % LED ROZEHETMIEBUAIE M 13 E % Arduino EARAGEINIEHHT
11 - ('R : MBBEBABBEUKEL)

By LRl - EPIEER BN —1F -

EHUEH 5 AM—{E LED - B <MfE LED —EEPg% -

2.
3.

5. (ERH

FERA (switch) ZoLIEMERERNEFZH - AMEIZARER
B . BREFEANBRRRERE -

i i I A 1) 52 T RYRR - ey
: -} PR S B
M E1RE - 212 MR FhE 4 Bt ME0 S - KB IR BN B SR -

RHERT 2019 © FEMEGRHIAIRAE |5

STEM 6 [ExX— : a5

P e e e e e e e e e e e e
® o o o O 9 0 e e e e OO

..... ? e @ @ @

L%

295 EREES - 5416 LED 1855 Arduino NANO SHARFIBITEHH)
5 - fEE LED EaUm S 6 o s =T 7 - R

RES AR A L o — (B R R T - m—#4
ROEL ch —E S BIE o SiL iiiit ErE e - EEEA

EMEART Arduino FIRH—ERHAINEE—AE EAIEE (built-in
pullup resistor) -

CE=ED &)
R (V)

6 HFERTH 2019 © HEMEIFHIAIRAE]

ZRANE LB - FMHAER read digital PULLUP pin X Ji&7K -
MAZERER &AM X, B -

ZUHEEFAEARELE RASEA—EEE "EREZWWA .
(signal edge detection)3k " ARB& {48 L (state change detection)
RO - A8 of DUk AR S f@ R il SRt B % sRaT s o " 3= T L DAR T BG4 T
B e

'ﬂhﬂ&Tﬁm SR

£ Arduino #RIZIRIZD - 1R Ol IA ISR 2% - % T 12 8185 " read digital
PULLUP pin X, EARRKERLIEE 0 - EXRE M ZHE - "read digital
PULLUP pin X ; &R ERIEEL -

F1P9 155 FE A 1 2 8 buttonState A buttonlLastState XLﬂ%iﬁlﬂﬁﬁa@E :
ERNIZMARENE E—EZBARE - [RIFFEAREBINE -

el 2010 © FerzRRHEATRAE (7

buttonState A% 5% buttonlLastState - BRI EAZHITECIEN(E -
EEERER TR AR NNENMEEE - ERAERE -
HMAoILURER R MWZLISHNEZ FTRHT E2ENRHNT -

SR bikbr-

B buttonState

A 7BERD - HFEmE TR pk. . BAR—E A BAESE
_t °

U8 i 2019 © ReMEAFHEATRAT

STEM_6

Self-learning Guide

PROJEC CKY WHEEL

Table of Contents

1. HArdWare LISteeeeeeeeiieeeiieeeiee ettt s 2
2. LUCKY WHEEI ...ttt e 2
@] o o 11T =48 1 = USSR 3
4. ASSINMENT L.ttt e e e e e eee e rer e ererarrrrrraes 4
LT U g Y = o TV o o USRS 4
6. ASSIBNMENT 2.iiiiiiiiiiii 7
7. USING BUZZEIS oo, 8
8. ASSIENMENT 3., 9
9. GAME SEIUCTUIE .ttt e ettt e e e e e e saeeree e e e e e e e s 10
10. LED light SEQUENCEuvviieeiiieeeeeee ettt e 12
11 ATUCKY WHEEI ... e 18
12. Weighted random NUMDErS...........oeeeeeiiieeeciiieee e 20
13, ASSISNMENT 4 .oeeiiiiiiiiiiiii s 24

14. FUrther REAdINGS ...ccccuuiiee ettt ettt saaee e 24

STEM_6 [PROJECT 2 LUCKY WHEEL]

9. Game Structure

In this section, we will be talking purely about programming. More precisely, we will

be talking about the programming structure of a game.

In general, for all games, there are different stages or levels. The game would not

proceed to next stage / level after finishing the previous one. The game would restart

at the beginning after the game is over.

To mimic the game stages, we would use a variable called stage. Initially, we set the

variable stage to 0. If one stage is completed, we will advance the variab

If the whole game is completed,

Arduino Program

ot XY o [

1l omething in stage 0
Il set stage tjo 1 if condition fullfilled

. stage =B then
Il do something in stage 2
Il set stage Eo 3 if condition fullfilled

P

ome.’.[‘hing in stage 3
Il reset stagje to O if condition fullfilled

e

:__J'ﬂ'.

10 Allrights reserved © Apricot Information Technology Ltd. 2019

[PROJECT 2 LUCKY WHEEL] STEM_6

In the above example, the whole program is controlled by a single variable stage and
a series of if then blocks. Because the variable stage can only hold one value at a time,

the if then blocks would prevent programming codes of other stages from running.

You can design what happen in each stage. You can light up different LEDs at different
stage. You can play different sound at different stage. The only limitation is your

imagination.

You can also program a condition at each stage for the game to advance to the next

stage. The condition can be anything programmable, from as simple as a single button

click, or just let the program to wait some time, to as complex 35 asking to

MPLE.

calises the game end.

perform a series of tasks.

There can also be multiple condifans=

to the completion of that stage, #iila t

proy

// play opening light sequence while waiting for contestant to press button
//if button is pressed down, advance to stage 1

SR

D/ play a quick light sequence while waiting for contestant to release button
//if button is released, advance to stage 2

7/ use random number to randomize the result //play slow down light sequence
// emphasize the result when pointerstops //reset to stage O automatically
s)

=t

S

All rights reserved © Apricot Information Technology Ltd. 2019 11

STEM_6 [PROJECT 2 LUCKY WHEEL]

Let us spend a minute to think of the different stages of a lucky wheel system. At
stage 0, the lucky wheel would be waiting for the contestant to press the button.
When the button is pressed, our program would advance to stage 1. In our program,
the wheel would not slow down until the button is release. So in stage 1, it would play
a quick light sequence to mimic the speed up of the wheel. When the button is
released, the program would advance to stage 2. In stage 2, the wheel would start to

slow down and eventually the pointer would stop at one position.

To make our lucky wheel better, our program would play an opening light sequence
while waiting in stage 0. And after the pointer stops, we would blink the LED of the

winning position for several times to emphasize the result, &

PLE

program, so how to

routton press.

program different light sequences? Let us built a circuit with 12 LEDs according to the

below diagram.

y

12 Allrights reserved © Apricot Information Technology Ltd. 2019

[PROJECT 2 LUCKY WHEEL] STEM_6

There are a total of twelve LEDs connecting to digital pin 2 — 13 of the Arduino board.

There is a push button connecting to analog pin AO of the Arduino board. The analog

pin A0 is also called digital pin 14.

There are two essential techniques in programming a light sequences. Using variables

to represent output pin number and calculating how long does it take for each LED to

turn on and off.

igital pin e oL

-

[]

i

t

i

o
:'l"\@:
:'r"\m'
" ®

t digital pin €& output as

[light-sequence-01.sb2]

In the above program, a variable pin is used to determine which LED to turn on and
turn off. And we change the value of pin in each loop from 2 to 13. When the value of

pin is bigger than 13, we reset it back to 2.

Two wait blocks are used to control the time duration for each step. In this simple

example, the time duration is between each step is fixed.

All rights reserved © Apricot Information Technology Ltd. 2019 13

STEM_6 [PROJECT 2 LUCKY WHEEL]

But the above example has a big problem. The wait blocks would affect other normal
functions such as button state change detection mentioned in section 5. This means

we cannot detect button press and button release in the above program.

The solution is simple, ditch the wait blocks and replace them with timer blocks.

Fen

set digital pin @& outpu

[light-sequence-02.sb2]

The second program does the same thing as the first program. Except for using the
timer block to control the time duration, there is one more special technique worth

mentioning. We use the read digital pin X block to check if the LED is ON or OFF.

igital pin £ pin

In the second program, inside each loop, if the target LED is OFF, we turn it on. If the

14 Allrights reserved © Apricot Information Technology Ltd. 2019

